框架断路器、塑壳断路器的区别
简单说就是大小的区别,不仅是外形尺寸上框架断路器要大于塑壳断路器,而且框架断路器的电流等级,分段能力等都要大于塑壳断路器。这是本质上的区别,因此框架断路器和塑壳断路器应用的场合不同,框架应用于上级进线,塑壳应用于框架的下级。
塑壳断路器和框架断路器同是断路器产品中使用十分普遍的产品,不过很多人并不是十分了解两者存在的区别,在选购的时候也经常会出现举棋不定的情况。我所面对的一些客户也经常有这样的困扰,所以我根据这个问题,咨询了工厂内三位*工程师,并对他们平时选购的一些心得进行总结,在这里说下塑壳断路器与框架断路器两者的区别,以及选用时需要注意的地方。框架断路器分段能力高且功能完善-工程师1
塑壳断路器采用塑料化结构,特点是将断路器外壳、框架采用塑料压制而成,将触头、灭弧系统都放在绝缘小室中,防止相间短路,确保电弧向上喷出,保证触头系统可靠分断。而框架断路器采用模块化结构,分为框架、触头灭弧系统、手动操作机构、电动操作机构、智能型控制器以及抽屉座等部分。每个部分都成为一个完整独立的部件,组装时只需1-2个螺钉即可将其固定,拆装十分方便有利于检修维护。
全新原装法国施耐德GV7电动机保护断路器 本条信息由乐清市迈创电气有限公司发布 GV7电机保护塑壳开关选型/配件-型号
应用范围:
电动机直接起动、直接控制。短路+热过载保护。需要实现一类、二类配合的应用场合。
GV7马达保护器是给电机全面的保护控制,在电机出现过流、欠流、断相、堵转、短路、过压、欠压、漏电、三相不平衡、过热、接地、轴承磨损、定转子偏心时、绕组老化予以报警或保护控制的装置。
GV7施耐德断路器部分型号:
GV7AU055,GV7AU107,GV7AU207,GV7AU387,GV7AU525,GV7AS055,GV7AS107,GV7AS207,GV7AS387,GV7-RS20,GV7RS20,GV7-RS30,GV7RS30,GV7-RS40,GV7RS40,GV7-RS50,GV7RS50,GV7-RS60,GV7-RS70,GV7-RS80,GV7-RS100,GV7-RS150,GV7-RS200,GV7-RS220,GV7-RE40,GV7-RE50,GV7-RE80,GV7-RE100,GV7-RE150,GV7-RE220
这两种方法都是采用并联电路设计——多余的电压从标准电路流入另一个电路。有几种浪涌保护器产品使用串联电路设计抑制电涌——它们不是将多余的电流分流到另一条线路,而是通过降低流过火线的电量。基本上说,这些抑制器在检测到高电压时会储存电能,随后再逐渐释放它们。制造这种保护器的公司解释说该方法可以提供更好的保护,因为它反应速度更快,并且不会向地线分流,但另一方面,这种分流可能会干扰建筑物的电力系统。
作为辅助元件,有些浪涌保护器还配有内置保险丝。保险丝是一种电阻器,当电流低于某个标准时,它的导电性能非常好。反之,当电流**过了可接受的标准,电阻产生的热量会烧断保险丝,从而切断电路。如果MOV不能抑制电涌,过高的电流将烧断保险丝,保护连接的设备。该保险丝只能使用一次,一旦烧断就需要更换。
有些浪涌保护器具有线路调节系统,用于滤除“线路噪声”,减小电流波动。这种基本浪涌保护器的系统结构非常简单。火线通过环形扼流线圈接到电源板插座上。扼流线圈只是一个用磁性材料做成的环,外面缠绕着导线——基本的电磁铁。火线中所流经电流的上下波动会给电磁铁充电,使其发出电磁能量,从而消除电流的微小波动。这种“经过调节”的电流更加稳定,可使计算机(或其他电子设备)的供电电流更加平缓。
浪涌源当某种装置在电源线中的某点使电荷激增时,就会产生电涌。这会导致电势能的增加,从而增大流出壁式电源插座的电流。有很多因素可导致发生电涌。
较常见的来源大概是闪电,尽管它实际上很少带来麻烦。当闪电划过电源线附近时,无论电源线是埋在地下、置于建筑物中还是沿着电线杆延伸,闪电电能都可以增加几百万伏的电压。其带来的强大电涌将**过几乎任何浪涌保护器的承受范围。在雷电交加的暴风雨中,您永远不可能依赖浪涌保护器来保护计算机,较好的保护方法就是切断计算机电源。
更常见的电涌源是大功率电气设备,例如电梯、空调和电冰箱。这些大功率设备在启动和关闭压缩机和电动机等部件时需要大量的电能。这种切换操作会产生突然且短暂的电力需求,从而扰乱电力系统的电压稳定。虽然这些浪涌远不如闪电带来的浪涌强,但是它们的强度也足以立即或逐渐损坏设备元件,并且它们会在大多数建筑物电力系统中经常发生。
其他电涌源包括错误配线、供电公司的设备问题和电源线老化等等。将电流从发电机传输到家庭或办公环境的变压器和线路系统非常复杂,其中可能会有很多故障点和错误会导致电流不稳。在今天的配电系统中,电涌的发生不可避免。在下一部分中,我们将了解这对您来说意味着什么。
是否需要安装浪涌保护器在上一部分中,我们了解到电涌是一种常见现象,在我们目前的家庭和办公供电系统中是不可避免的。这就产生了一个有趣的问题:如果电涌是电力系统固有的现象,为什么在50年前我们的家庭中就不需要浪涌保护器呢?
回答是,现代电子设备(例如,计算机、微波炉、DVD播放器)非常复杂,其中的很多元器件要比以前机器中的元器件更小和更精密,因此它们对电流的增加更敏感。微处理器是所有计算机和许多家用设备中不可缺少的部件,它们对电涌特别敏感。只有在电压正常、电流稳定的条件下,才能正常工作。
温控仪电路如图1所示。DS18B20完成温度的测量并转成换数字信号,AT89C2051单片机根据此数字信号对三极管进行控制,进而控制风扇的旋转与停止。当温度**28℃时,三极管完全导通,风扇全速旋转;当温度低于8℃时三极管截止,风扇停转;当机箱温度在28℃与8℃之间时,单片机采用脉宽调制方式(PWM)为风扇供电,使风扇的平均工作电压在12v与6v之间,温度越低,平均工作电压越小,风扇转速就越慢。单片机程序以每变化4℃为一个控制间隔(控制点为28℃、24℃、20℃、16℃、12℃、8℃),温度降低每越过一个控制点,风扇工作电压便降低10%,风扇转速也相应降低10%, AT89C2051单片机没有脉宽调制发生器.故利用单片机两个定时器模拟产生可调脉宽波形,可调脉宽波形的高电平时长由定时器0决定,可调脉宽波形的低电平时长由定时器1决定,如图2所示。如果温度增加越过一个控制点,程序就会增加定时器0的定时长度,同时缩短定时器1的定时长度,从而使三极管的导通时间延长。风扇转速增加。
功能介绍干式变压器温度控制器采用高性能PT100传感器,是保证干式变压器安全运行的控制装置。该仪表设计新式,结构紧凑、牢固、显示醒目、直观,具有更加完善的系统保护、参数保存与输出指示等功能。其特有的温度**限报警,**温跳闸;负载断线报警输出,可以更好的保证无人值守供电系统安全、高效运行。
其应用范围非常广泛,不同种类的温控器应用在家电、电机、制冷或制热等众多控温产品中。在电力部门中,各种高低压开关柜、干式变压器、箱式变电站及其他相关的控温领域均有涉及。
工作原理通过温度传感器对环境温度自动进行采样、即时监控,当环境温度**控制设定值时控制电路启动,可以设置控制回差。如温度还在升,当升到设定的**限报警温度点时,启动**限报警功能。当被控制的温度不能得到有效的控制时,为了防止设备的毁坏还可以通过跳闸的功能来停止设备继续运行。
温控器的接线一般是接输入输出较主要的2个部位接好线和供电电源就可以正常的工作了。高档、复杂的温控器功能较多,主要是给2次仪表和记录仪的信号;或者外部的开关信号。把握住仪表的功能就能很容易进行接线。